FORMAL VERIFICATION OF ASYMPTOTIC COMPLEXITY BOUNDS FOR OCAML PROGRAMS

Armaël Guéneau supervised by François Pottier & Arthur Charguéraud November 12, 2015

Time complexity can be formalized in separation logic, thanks to *time credits*.

Example of specification:

Amortized cost for **union**: $3 \times \alpha(N) + 6$.

Counting credits explicitly quickly becomes impractical, compared to using the "O()" notation:

- $n^2 \times m + 3nm + 3n + 6m + 5\log(n) + 2\log(m) + 5\log(n)\log(m) + 8$ instead of $O(n^2 \times m)$
- Specifications using explicit credits count are not modular
- Credits count are to be considered up to a constant factor anyway

We present "CFML+credits+big-Os", an extension of "CFML+credits" which formalizes (in Coq) the big-O notation, to be used in program specifications.

Formalizing big-Os: challenges and proposed solutions

Proof automation

Case studies

FORMALIZING BIG-OS: CHALLENGES AND PROPOSED SOLUTIONS

Recall the standard textbook definition for "O()":

$f \in O(g) \equiv \exists c, \exists n_0, \forall n \ge n_0, |f(n)| \le c \times |g(n)|$

Why is this not trivial to formalize?

We often informally write "f is $O(n^2)$ ".

However O() is a relation on functions, not expressions. \Rightarrow We should write "f is $O(\lambda n.n^2)$ " instead.

How do we handle cost functions with multiple parameters?

let fill_rect n m =
for j = 1 to m do
for i = 1 to n do
draw_pixel i j
done
done

Concrete cost:
$$f(n,m) = m \times (1+n) + 1$$
 $= m \times n + m + 1$

Is fill_rect $O(\lambda(n, m).m \times n)$?

• If *n* and *m* go to infinity, then indeed $f(n,m) \in O(\lambda(n,m).m \times n)$

What about the asymptotic cost of "fill_rect 0 m"?

- Concrete cost: f(0,m) = m + 1
- Clearly not $O(\lambda m.m \times 0) = O(0)$

 \Rightarrow We cannot reuse the previous asymptotic bound

- Big-O bounds are proved for one given notion of "going to infinity"
- There are multiple, non-equivalent ones

 \Rightarrow Let the user choose, while keeping a lightweight notation for the common cases.

CHALLENGE 2 SOLUTION: *FILTERS*, A FORMAL NOTION OF "GOING TO INFINITY"

A filter on a set A:

- is of type $(A \rightarrow Prop) \rightarrow Prop$, named filter A;
- · represents the set of neighborhoods of infinity;
- must satisfy additional properties, bundled in a Filter Coq class.

```
E.g. the standard filter on \mathbb{Z} is:
Definition towards_infinity_Z: filter Z := fun (P: Z \rightarrow Prop) \Rightarrow \exists x0, \forall x, x0 \leq x \rightarrow P x
```

CHALLENGE 2 SOLUTION: *FILTERS*, A FORMAL NOTION OF "GOING TO INFINITY"

"O()" definition parameterized by a filter *ultimately*:

```
Definition dominated

(ultimately: filter A)

(fg: A \rightarrow Z) :=

\exists c, ultimately (fun x \Rightarrow norm (f x) \leq c * norm (g x)).
```

We use Coq typeclasses to allow the filter to be inferred in standard cases.

CHALLENGE 2 SOLUTION: FILTERS ON Z^2

What were the filters involved in our fill_rect example?

- "Both components go to infinity": Definition towards_infinity_ZZ := fun (P: Z*Z \rightarrow Prop) \Rightarrow \exists P1 P2, towards_infinity_Z P1 \land towards_infinity_Z P2 \land \forall x1 x2, P1 x1 \rightarrow P2 x2 \rightarrow P (x1, x2)
- "The first component is fixed to x0, the second goes to infinity":

Definition towards_infinity_xZ (x0: Z) := fun (P: { p: Z*Z | fst p = x0 } \rightarrow Prop) \Rightarrow towards_infinity_Z (fun y \Rightarrow P (x0, y))

"The cost of **p** is O(g)" hides an additional existential quantification.

"The cost of **p** is O(g)" is in fact "there exists a cost function f st. $f \in O(g)$ and running **p(n)** takes f(n) steps".

- Convenient informal notation
- But more error prone: some incorrect proofs are harder to detect syntactically

CHALLENGE 3: A FLAWED PROOF

```
let rec loop n =
  if n <= 0 then () else loop (n-1)</pre>
```

Lemma (incorrect)

The asymptotic complexity of loop is O(1).

Proof.

(flawed, but not so obviously). By induction on n,

- $n \leq 0$: **loop** terminates in O(1);
- $n \ge 1$: the cost of loop(n) is the cost of loop(n-1) plus O(1). By induction, the cost of loop(n-1) is O(1). $O(1) + O(1) = O(1) \Rightarrow$ total cost of O(1).

The mistake: an invalid quantifier permutation.

- "there exists a cost function f st. for all n, ...", is not
- *"for all n, there exists a cost function f ..."*.

The explicit cost function must be instantiated *before* entering the induction.

Coq is able to reject this kind of incorrect reasoning; the challenge is to keep a lightweight presentation.

CHALLENGE 3 (IMPERFECT) SOLUTION

We define **SpecO**, in order to write specifications using big-Os:

Definition Spec0 (ultimately: filter A) (g: $A \rightarrow Z$) (spec: ($A \rightarrow Z$) \rightarrow Prop) := $\exists (f: A \rightarrow Z)$, dominated _ f g \land spec f.

 $\forall n, \{ \$ (3 * n^2 + 2 * n + 5) \star H \} t(n) \{ Q \}$

becomes

Spec0
$$(\lambda n \Rightarrow n^2)(\lambda F \Rightarrow \forall n, \{\$ F n \star H\} t(n)\{Q\})$$

Remark: arguments of the cost function do not have to be the arguments of the program.

Example: specification for List.length

$$\forall$$
l,
Spec0_(λ n ⇒ n)(λ F ⇒
{\$ F (length l)} List.length l { λ n ⇒ [n = length l]})

It does not cover all usages though, e.g. quantifying over a class of filters for the same cost function.

 $\exists (f: A \rightarrow Z), \\ (\forall \ x0, \ dominated \ (towards_infinity_xZ \ x0) \ f \ g) \ \land \ spec \ f$

 \Rightarrow More general version of SpecO parameterized by any relation on *f*, *g*.

Paper proofs assume extensively that cost functions are non-decreasing.

CHALLENGE 4: MONOTONIC COST FUNCTIONS

G(N) := F(log(N) + 1)

 $\Rightarrow \mbox{We need to prove } F(h) {\leqslant} \ G(N).$ $\Rightarrow \mbox{We need } F \ \mbox{to be non-decreasing}.$

A. Guéneau

```
Definition SpecO (ultimately: filter A) le

(g: A \rightarrow Z) (spec: (A \rightarrow Z) \rightarrow Prop)

:=

\exists (f: A \rightarrow Z),

(\forall x, 0 \leq f x) \land

monotonic _ f \land

dominated _ f g \land

spec f.
```

We would like to have:

"if f is O(g), then f + c is also O(g) (with c a constant)".

Yet, this is false for g = 0.

We would like to have:

"if f is O(g), then $\lambda n \cdot \log(f(n))$ is $O(\lambda n \cdot \log(g(n)))$ ".

Yet, this is false for g = 1 and $f \ge 2$.

Alternative notion of O(): idominated.

- Matches dominated on the interesting cases: when costs functions go to infinity;
- Handles more pathological cases.

```
Definition idominated

(ultimately: filter A) (leA: A \rightarrow A \rightarrow Prop)

(fg: A \rightarrow Z)

:=
```

```
ultimately (monotonic_after leA leZ g) \land ((bounded _ f \land bounded _ g) \lor dominated _ f g).
```

The following lemmas are now true:

idominated _ _ f g \rightarrow idominated _ _ (fun n \Rightarrow c + f n) g

$$\begin{array}{l} \text{idominated}__fg \rightarrow \\ \text{idominated}__(fun \ x \Rightarrow Z.log2 \ (f \ x)) \\ & (fun \ x \Rightarrow Z.log2 \ (g \ x)) \end{array}$$

We also adapt SpecO to use idominated in place of dominated.

A. Guéneau

PROOF AUTOMATION

Goal-directed tactics to solve / simplify idominated, monotonic, monotonic_after goals.

Able to prove or simplify automatically goals involving $+, \times, \log, \hat{}$.

Goal idominated _ _ (fun $n \Rightarrow 5 * Z.log2 (3 * n + 2) + 8) Z.log2$. Proof. idominated_Z_auto; math. Qed. Auxiliary tactics to deal with η -equivalence for *n*-ary functions (still imperfect).

- We have to reason modulo η -equivalence.
 - $O(\log)$ vs $O(\lambda n. \log(n))$
 - $\cdot \ f \in O(h) \Rightarrow g \in O(h) \Rightarrow \lambda n.f(n) + g(n) \in O(h)$
- Not automatic on *n*-ary (uncurried) functions.
 - They are of the form λp .let (n, m) = p in ...
 - $\begin{array}{l} \cdot \ f \in O(h) \Rightarrow g \in O(h) \Rightarrow \\ \lambda p.(\text{let } (n,m) \ = \ p \ \text{in} \ f((n,m)) + g((n,m))) \in O(h) \end{array} \end{array}$

WIP: a set of tactics to elaborate the cost function through the proof.

$$\begin{array}{l} \text{SpecO}_{(\lambda n \Rightarrow n)} (\lambda F \Rightarrow \text{spec } F) \\ \text{xcfO} (\text{fun } n \Rightarrow 3 * n + 12). \\ [...] \\ \end{array} \rightarrow \begin{array}{l} \text{xcfO}. [...] \\ \text{add_credits} (\lambda n \Rightarrow 1). [...] \\ \text{add_credits} (\lambda n \Rightarrow 2 * n). \\ [...] \end{array}$$

CASE STUDIES

We used the resulting library to formalize two non-trivial data structures:

- Dynamic Arrays, an imperative structure with amortized *O*(1) costs;
- Binary Random Access Lists, a purely functional data structure with O(log n) costs, parameter transformation and filters on Z².

Why a parameter transformation and filters on \mathbb{Z}^2 ?

Figure 1: Induction for lookup and update

CONCLUSION: SOME NUMBERS

- Binary Random Access Lists:
 - Code: 80 lines, proof: 630 lines
 - Whole complexity analysis (credits + big-Os): $\simeq 40\%$
 - $\cdot\,$ Reasoning on big-Os: $\simeq 25\%$
- Dynamic Arrays:
 - Code: 95 lines, proof: 520 lines
 - Whole complexity analysis (credits + big-Os): $\simeq 50\%$
 - Reasoning on big-Os: $\simeq 6\%$)
- + Size of the library: \simeq 2300 lines of Coq
 - dominated, idominated (definition, lemmas, tactics):
 1260 lines
 - Filters (definitions, instances): 730 lines
 - Monotonicity (tactics): 250 lines
 - **Spec0** (definition, lemmas, tactics): 70 lines