
formal verification of asymptotic
complexity bounds for ocaml
programs

Armaël Guéneau
supervised by François Pottier & Arthur Charguéraud
November 12, 2015

A. Guéneau Formal Verification of Asymptotic Complexity Bounds November 12, 2015 1/35

counting program steps with time credits

Time complexity can be formalized in separation logic,
thanks to time credits.

Example of specification:

{ UF N D R ‹$ (3 * (alpha N)+ 6) }
union x y

{ λz ñUF N D (fun w ñIf R w = R x _R w = R y then z else
R w)‹ [z = R x _z = R y] }

Amortized cost for union: 3ˆ αpNq ` 6.

A. Guéneau Formal Verification of Asymptotic Complexity Bounds November 12, 2015 2/35

formalizing big-os: motivation

Counting credits explicitly quickly becomes impractical,
compared to using the “Opq” notation:

• n2 ˆm` 3nm` 3n` 6m` 5 logpnq ` 2 logpmq `

5 logpnq logpmq ` 8 instead of Opn2 ˆmq

• Specifications using explicit credits count are not
modular

• Credits count are to be considered up to a constant
factor anyway

A. Guéneau Formal Verification of Asymptotic Complexity Bounds November 12, 2015 3/35

our contribution

We present “CFML+credits+big-Os”, an extension of
“CFML+credits” which formalizes (in Coq) the big-O
notation, to be used in program specifications.

A. Guéneau Formal Verification of Asymptotic Complexity Bounds November 12, 2015 4/35

outline of this talk

Formalizing big-Os: challenges and proposed solutions

Proof automation

Case studies

A. Guéneau Formal Verification of Asymptotic Complexity Bounds November 12, 2015 5/35

formalizing big-os: challenges
and proposed solutions

big-os textbook definition

Recall the standard textbook definition for “Opq”:

f P Opgq ” Dc, Dn0, @n ě n0, |fpnq| ď cˆ |gpnq|

Why is this not trivial to formalize?

A. Guéneau Formal Verification of Asymptotic Complexity Bounds November 12, 2015 7/35

challenge 1: binding variables

We often informally write “f is Opn2q”.

However Opq is a relation on functions, not expressions.

ñ We should write “f is Opλn.n2q” instead.

A. Guéneau Formal Verification of Asymptotic Complexity Bounds November 12, 2015 8/35

challenge 2: going to infinity

How do we handle cost functions with multiple
parameters?

let fill_rect n m =
for j = 1 to m do
for i = 1 to n do
draw_pixel i j

done
done

Concrete cost:

fpn,mq “ mˆ p1` nq ` 1
“ mˆ n`m` 1

A. Guéneau Formal Verification of Asymptotic Complexity Bounds November 12, 2015 9/35

challenge 2: going to infinity

Is fill_rect Opλpn,mq.mˆ nq?

• If n and m go to infinity, then indeed
fpn,mq P Opλpn,mq.mˆ nq

What about the asymptotic cost of “fill_rect 0 m”?

• Concrete cost: fp0,mq “ m` 1
• Clearly not Opλm.mˆ 0q “ Op0q

ñ We cannot reuse the previous asymptotic bound

A. Guéneau Formal Verification of Asymptotic Complexity Bounds November 12, 2015 10/35

challenge 2: going to infinity

• Big-O bounds are proved for one given notion of
“going to infinity”

• There are multiple, non-equivalent ones

ñ Let the user choose, while keeping a lightweight
notation for the common cases.

A. Guéneau Formal Verification of Asymptotic Complexity Bounds November 12, 2015 11/35

challenge 2 solution: , a formal notion of
“going to infinity”

A filter on a set A:

• is of type (A ÑProp)ÑProp, named filter A;
• represents the set of neighborhoods of infinity;
• must satisfy additional properties, bundled in a
Filter Coq class.

E.g. the standard filter on Z is:
Definition towards_infinity_Z: filter Z :=
fun (P: Z ÑProp) ñ Dx0, @x, x0 ď x ÑP x

A. Guéneau Formal Verification of Asymptotic Complexity Bounds November 12, 2015 12/35

challenge 2 solution: , a formal notion of
“going to infinity”

“Opq” definition parameterized by a filter ultimately:

Definition dominated
(ultimately: filter A)
(f g : A ÑZ) :=

Dc, ultimately (fun x ñnorm (f x) ď c * norm (g x)).

We use Coq typeclasses to allow the filter to be inferred
in standard cases.

A. Guéneau Formal Verification of Asymptotic Complexity Bounds November 12, 2015 13/35

challenge 2 solution: filters on z2

What were the filters involved in our fill_rect
example?

• “Both components go to infinity”:
Definition towards_infinity_ZZ :=
fun (P: Z*Z ÑProp) ñ

DP1 P2, towards_infinity_Z P1 ^

towards_infinity_Z P2 ^

@x1 x2, P1 x1 ÑP2 x2 ÑP (x1, x2)

• “The first component is fixed to x0, the second goes
to infinity”:
Definition towards_infinity_xZ (x0: Z) :=
fun (P: { p: Z*Z | fst p = x0 } ÑProp) ñ

towards_infinity_Z (fun y ñP (x0, y))
A. Guéneau Formal Verification of Asymptotic Complexity Bounds November 12, 2015 14/35

challenge 3: existential quantifications

“The cost of p is Opgq” hides an additional existential
quantification.

“The cost of p is Opgq” is in fact “there exists a cost
function f st. f P Opgq and running p(n) takes fpnq steps”.

• Convenient informal notation
• But more error prone: some incorrect proofs are
harder to detect syntactically

A. Guéneau Formal Verification of Asymptotic Complexity Bounds November 12, 2015 15/35

challenge 3: a flawed proof

let rec loop n =
if n <= 0 then () else loop (n-1)

Lemma (incorrect)
The asymptotic complexity of loop is Op1q.

Proof.

(flawed, but not so obviously). By induction on n,

• n ď 0: loop terminates in Op1q;
• n ě 1: the cost of loop(n) is the cost of loop(n-1)
plus Op1q. By induction, the cost of loop(n-1) is
Op1q. Op1q ` Op1q “ Op1q ñ total cost of Op1q.

A. Guéneau Formal Verification of Asymptotic Complexity Bounds November 12, 2015 16/35

challenge 3: a flawed proof

The mistake: an invalid quantifier permutation.

• “there exists a cost function f st. for all n, …”, is not
• “for all n, there exists a cost function f …”.

The explicit cost function must be instantiated before
entering the induction.

Coq is able to reject this kind of incorrect reasoning; the
challenge is to keep a lightweight presentation.

A. Guéneau Formal Verification of Asymptotic Complexity Bounds November 12, 2015 17/35

challenge 3 (imperfect) solution

We define SpecO, in order to write specifications using
big-Os:
Definition SpecO (ultimately: filter A)
(g: A ÑZ) (spec: (A ÑZ) ÑProp)

:=
D(f: A ÑZ), dominated _ f g ^ spec f.

@n, {$ (3 * n2+ 2 * n + 5)‹H} t(n){Q}

becomes

SpecO _ (λn ñn2)(λF ñ @n, {$ F n ‹H} t(n){Q})

A. Guéneau Formal Verification of Asymptotic Complexity Bounds November 12, 2015 18/35

challenge 3 (imperfect) solution

Remark: arguments of the cost function do not have to
be the arguments of the program.

Example: specification for List.length

@l,
SpecO _ (λn ñn) (λF ñ

{$ F (length l)} List.length l {λn ñ [n = length l]})

A. Guéneau Formal Verification of Asymptotic Complexity Bounds November 12, 2015 19/35

challenge 3 (imperfect) solution

It does not cover all usages though, e.g. quantifying over
a class of filters for the same cost function.

D(f: A ÑZ),
(@ x0, dominated (towards_infinity_xZ x0) f g) ^

spec f

ñ More general version of SpecO parameterized by any
relation on f,g.

A. Guéneau Formal Verification of Asymptotic Complexity Bounds November 12, 2015 20/35

challenge 4: monotonic cost functions

Paper proofs assume extensively that cost functions are
non-decreasing.

A. Guéneau Formal Verification of Asymptotic Complexity Bounds November 12, 2015 21/35

challenge 4: monotonic cost functions

Example:

h ď logpNq ` 1

{$ F(h)} p {}
F P Opλh.hq

ÝÑ {$ G(N)} p {}
G P OpλN. logpNqq

G(N):= F(log(N)+ 1)

ñ We need to prove F(h)ď G(N).
ñ We need F to be non-decreasing.
A. Guéneau Formal Verification of Asymptotic Complexity Bounds November 12, 2015 22/35

challenge 4 solution: new definition of speco

Definition SpecO (ultimately: filter A) le
(g: A ÑZ) (spec: (A ÑZ) ÑProp)

:=
D(f: A ÑZ),
(@ x, 0 ď f x) ^

monotonic _ _ f ^

dominated _ f g ^

spec f.

A. Guéneau Formal Verification of Asymptotic Complexity Bounds November 12, 2015 23/35

challenge 5: o(0) and undesirable side-conditions

We would like to have:

“ if f is Opgq, then f` c is also Opgq (with c a constant)”.

Yet, this is false for g “ 0.

A. Guéneau Formal Verification of Asymptotic Complexity Bounds November 12, 2015 24/35

challenge 5: o(0) and undesirable side-conditions

We would like to have:

“ if f is Opgq, then λn. logpfpnqq is Opλn. logpgpnqq”.

Yet, this is false for g “ 1 and f ě 2.

A. Guéneau Formal Verification of Asymptotic Complexity Bounds November 12, 2015 25/35

challenge 5 solution

Alternative notion of Opq: idominated.

• Matches dominated on the interesting cases:
when costs functions go to infinity;

• Handles more pathological cases.

Definition idominated
(ultimately: filter A) (leA: A ÑA ÑProp)
(f g : A ÑZ)

:=
ultimately (monotonic_after leA leZ g) ^

((bounded _ f ^ bounded _ g) _dominated _ f g).

A. Guéneau Formal Verification of Asymptotic Complexity Bounds November 12, 2015 26/35

challenge 5 solution

The following lemmas are now true:

idominated _ _ f g Ñ

idominated _ _ (fun n ñc + f n) g

idominated _ _ f g Ñ

idominated _ _ (fun x ñZ.log2 (f x))
(fun x ñZ.log2 (g x))

We also adapt SpecO to use idominated in place of
dominated.

A. Guéneau Formal Verification of Asymptotic Complexity Bounds November 12, 2015 27/35

proof automation

proof automation

Goal-directed tactics to solve / simplify idominated,
monotonic, monotonic_after goals.

Able to prove or simplify automatically goals involving
`,ˆ, log,^.
Goal idominated _ _
(fun n ñ 5 * Z.log2 (3 * n + 2) + 8) Z.log2.
Proof. idominated_Z_auto; math. Qed.

A. Guéneau Formal Verification of Asymptotic Complexity Bounds November 12, 2015 29/35

proof automation

Auxiliary tactics to deal with η-equivalence for n-ary
functions (still imperfect).

• We have to reason modulo η-equivalence.
• Oplogq vs Opλn. logpnqq

• f P Ophq ñ g P Ophq ñ λn.fpnq ` gpnq P Ophq

• Not automatic on n-ary (uncurried) functions.
• They are of the form λp.let pn,mq “ p in . . .

• f P Ophq ñ g P Ophq ñ

λp.plet pn,mq “ p in fppn,mqq ` gppn,mqqq P Ophq

A. Guéneau Formal Verification of Asymptotic Complexity Bounds November 12, 2015 30/35

proof automation

WIP: a set of tactics to elaborate the cost function
through the proof.

========================
SpecO _ _ (λn ñn) (λF ñspec F)

xcfO (fun n ñ 3 * n + 12).
[...] Ñ

xcfO. [...]
add_credits (λn ñ 1). [...]
add_credits (λn ñ 2 * n).
[...]

A. Guéneau Formal Verification of Asymptotic Complexity Bounds November 12, 2015 31/35

case studies

case studies

We used the resulting library to formalize two non-trivial
data structures:

• Dynamic Arrays, an imperative structure with
amortized Op1q costs;

• Binary Random Access Lists, a purely functional data
structure with Oplognq costs, parameter
transformation and filters on Z2.

A. Guéneau Formal Verification of Asymptotic Complexity Bounds November 12, 2015 33/35

binary random access lists

Why a parameter transformation and filters on Z2?

Figure 1: Induction for lookup and update

A. Guéneau Formal Verification of Asymptotic Complexity Bounds November 12, 2015 34/35

conclusion: some numbers

• Binary Random Access Lists:
• Code: 80 lines, proof: 630 lines
• Whole complexity analysis (credits + big-Os): » 40%
• Reasoning on big-Os: » 25%

• Dynamic Arrays:
• Code: 95 lines, proof: 520 lines
• Whole complexity analysis (credits + big-Os): » 50%
• Reasoning on big-Os: » 6%)

• Size of the library: » 2300 lines of Coq
• dominated, idominated (definition, lemmas, tactics):
1260 lines

• Filters (definitions, instances): 730 lines
• Monotonicity (tactics): 250 lines
• SpecO (definition, lemmas, tactics): 70 lines

A. Guéneau Formal Verification of Asymptotic Complexity Bounds November 12, 2015 35/35

	Formalizing big-Os: challenges and proposed solutions
	Proof automation
	Case studies

